
Circulating-free DNA (cfDNA) and tissue next-generation sequencing analysis in a phase II study of infigratinib (BGJ398) for cholangiocarcinoma with FGFR2 fusions

Shalini Makawita,¹ Robin Kate Kelley,² Sameek Roychowdhury,³ Karl-Heinz Weiss,⁴ Ghassan K. Abou-Alfa,⁵ Teresa Macarulla,⁶ Saeed Sadeghi,⁷ Dirk Waldschmidt,⁸ Andrew X. Zhu,⁹ Lipika Goyal,⁹ Wei Peng Yong,¹⁰ Ivan Borbath,¹¹ Anthony El-Khoueiry,¹² Philip A. Philip,¹³ Susan Moran,¹⁴ Yining Ye,¹⁴ Harris S. Soifer,¹⁴ A Li,¹⁴ Craig Berman,¹⁴ Milind Javle¹ ¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ⁴Universitätsklinikum Heidelberg, Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, James Cancer Center, Sant Francisco, CA, USA; ⁴Universitätsklinikum Heidelberg, Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, and Weill Comell Medical College, New York, NY, USA; ⁴Universitätsklinikum Heidelberg, Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, Baston, TX, USA; ⁴Universitätsklinikum Heidelberg, Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, Santa Monica, CA, USA; ⁴Universitätsklinikum Heidelberg, Heidelberg, Heidelberg, Heidelberg, Bernany; ⁵Memorial Sloan Kettering Cancer Center, Santa Monica, CA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Boston, MA, USA; ⁴Universität zu Köln, Cologne, Germany; ⁵Memorial Sloan Kettering Cancer Center, Cancer Center, Los Angeles, CA, USA; 13Karmanos Cancer Institute, Detroit, MI, USA; 14QED Therapeutics, San Francisco, CA, USA

Background

- Cholangiocarcinomas are often diagnosed at an advanced unresectable stage, with few treatment options available after disease progression while receiving gemcitabine and cisplatin first-line chemotherapy, resulting in poor patient prognosis.
- Numerous cancers have fibroblast growth factor receptor (FGFR) genomic alterations EGER fusions (i.e. translocations) represent genomic drivers of cholangiocarcinoma. They are present in 13-17% of intrahepatic cholangiocarcinomas (iCCA) and may predict tumor sensitivity to FGFR inhibitors.1
- Infigratinib (BGJ398), an ATP-competitive FGFR1–3-selective oral tyrosine kinase inhibitor, has shown preliminary clinical activity against tumors with FGFR alterations 4
- In early-phase clinical evaluation, infigratinib showed a manageable safety profile and single-agent activity.5.6
- A multicenter, open-label, phase II study (NCT02150967) evaluated the antitumor activity of infigratinib in patients with previously-treated advanced IHC containing FGFR2 fusions.
- Here, we report a detailed analysis of tissue and cell-free DNA (cfDNA) biomarkers from NCT02150967.

Figure 1. Infigratinib: an oral FGFR1-3 selective kinase inhibitor

Study methods

Patients

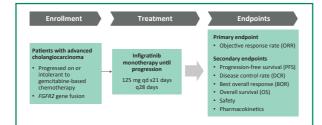
- Histologically or cytologically confirmed advanced/metastatic iCCA with FGFR2 fusions identified by molecular testing at a local/institutional laboratory or central laboratory (Foundation Medicine USA)
- Measurable or evaluable disease according to RECIST (version 1.1), an ECOG performance status of 0 or 1, and evidence of disease progression after one or more prior regimens of gemcitabine-based combination therapy or gemcitabine monotherapy

Treatment

- Patients received infigratinib 125 mg once daily for 21 days followed by 7 days off in 28-day cycles
- To manage hyperphosphatemia, prophylactic use of sevelamer, a phosphatebinding agent, was recommended on days of infigratinib administration per the product packaging information and institutional guidelines. Patients were also instructed to adhere to a low-phosphate diet.
- Patients continued infigratinib treatment until unacceptable toxicity, disease progression, and/or investigator discretion, or consent withdrawal
- Dose modifications were based on the worst preceding toxicity. Treatment was resumed after resolution or reduction to grade 1 toxicity, with each patient allowed two dose reductions (100 mg, 75 mg) before infigratinib discontinuation.

Outcomes

- Tumor response was assessed per RECIST version 1.1, using CT or MRI.
- Primary and secondary efficacy endpoints see Figure 2.
- Adverse events (AEs) were assessed according to the Common Terminology Criteria for Adverse Events, version 4.03, during treatment and until 30 days after the last dose was administered.


Statistics

- Data were combined from all participating study sites for the analyses.
- Efficacy and safety analyses included all patients whose tumors had FGFR2 fusions and received at least one infigratinib dose.

Biomarker studies

- Comprehensive genomic profiling (CGP) was performed by the central laboratory on tumor tissue collected prior to therapy (at screening) to confirm the FGFR2 fusion for patient eligibility.
- cfDNA collected at screening was analyzed by a next generation sequencing using a 600-gene panel (Novartis labs).
- Genomic alterations with known or likely impacts on protein function and variants of unknown functional significance are reported.

Figure 2. Open-label, phase II study design

Table 1. Baseline patient demographics and clinical characteristics

Characteristic	N=71
Median age, years (range)	53 (28-74)
Male / female	27 (38.0) / 44 (62.0)
Race	
White	55 (77.5)
Black	3 (4.2)
Asian	4 (5.6)
Other / unknown	3 (4.2) / 6 (8.5)
ECOG performance status	
0/1	29 (40.8) / 42 (59.2)
Prior lines of therapy	
	00 (15 1)

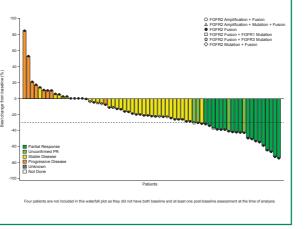
≤1	32 (45.1)
≥2	39 (54.9)
FGFR2 status	
Fusion positive	71 (100.0)

Table 2. Patient disposition

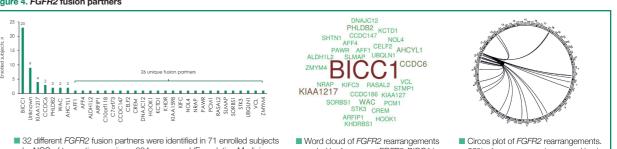
	Number (%)
Total receiving treatment	71 (100.0)
Treatment ongoing	9 (12.7)
Ended treatment	62 (87.3)
Missing	1 (1.4)
Adverse event	6 (8.5)
Death	1 (1.4)
Lost to follow-up	1 (1.4)
Physician decision	5 (7.0)
Progressive disease	44 (62.0)
Subject/guardian decision	4 (5.6)

Table 3. Clinical activity of infigratinib in advanced cholangiocarcinoma

Efficacy outcome in all fusion patients	N=71
Objective response rate (ORR; confirmed & unconfirmed), % (95% Cl)	31.0 (20.5-43.1)
Complete response, n (%)	0
Partial response - confirmed, n (%)	18 (25.4)
Stable disease, n (%)	41 (57.7)
Progressive disease, n (%)	8 (11.3)
Unknown, n (%)	4 (5.6)


Efficacy outcome in patients with potential for confirmation*	
cORR, % (95% CI)	26.9 (16.8-39.1)
cORR in patients receiving prior lines of treatment, %	
≤1 (n=28)	39.3
≥2 (n=39)	17.9
Disease control rate (DCR), % (95% CI)	83.6 (72.5–91.5)
Median duration of response, months (95% CI)	5.4 (3.7-7.4)
Median PFS, months (95% CI)	6.8 (5.3-7.6)
Median OS, months (95% CI)	12.5 (9.9-16.6)

*Patients completed (or discontinued prior to) 6 cycles. Investigator-assessed.


Table 4. Infigratinib safety profile: any grade AEs >25%

Number of patients (%)	Any grade	Grade 3/4
Hyperphosphatemia	52 (73.2)	9 (12.7)
Fatigue	35 (49.3)	3 (4.2)
Stomatitis	32 (45.1)	7 (9.9)
Alopecia	27 (38.0)	0
Constipation	25 (35.2)	1 (1.4)
Dry eye	23 (32.4)	0
Dysgeusia	23 (32.4)	0
Arthralgia	21 (29.6)	1 (1.4)
Palmar-plantar erythrodysesthesia syndrome	19 (26.8)	4 (5.6)
Dry mouth	18 (25.4)	0
Dry skin	18 (25.4)	0

Figure 3. Efficacy of infigratinib in FGFR2 fusion-positive cholangiocarcinoma

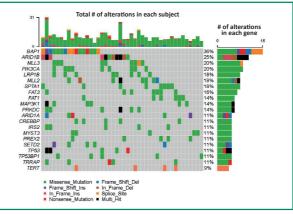


Figure 4. FGFR2 fusion partners

by NGS of tumor tissue using a 324 gene panel (Foundation Medicine, USA). The partner gene information for 9 subjects was unknown; intron 17 rearrangement (n=4) and rearrangement by FISH (n=5)

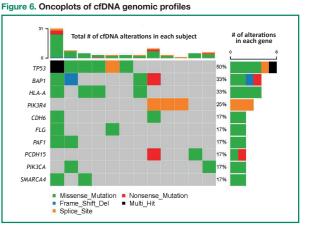
Figure 5. Oncoplots of tumor genomic profiles

- 15 patients had tumor mutational burden (TMB) data available. All 15 patients were TMB low.
- BAP1 (36%), ARID1B (25%), MLL3 (20%) and PIK3CA (20%) were most frequently altered
- Actionable mutations in IDH2 and PIK3CA and copy number changes in CDK4 and MET were identified in individual subjects.
- Coincident amplification of FGFR2 (1) and different mutations in FGFR2 (3) and FGFR3 (1) were also observed in five subjects with FGFR2 fusions.

Conclusions

- effect and/or duration of response
- FGFR2 fusions and to study intratumoral heterogeneity.

Acknowledgements


- The authors would like to acknowledge the following:
- CBGJ398X2204 study investigators and participating patients.
- Jeff Cai for programming for review of content (QED Therapeutics).
- Monoceros Biosystems for provision of bioinformatics support for this poster.
- Lee Miller (Miller Medical Communications) for provision of medical writing support for this poster
- This work was funded by QED Therapeutics.

#579

scaled by frequency. FGFR2-BICC1 is the most frequent fusion (37%)

66% of rearrangements occured in cis between FGFR2 and other genes on chromosome 10

- Genomic alterations in cfDNA were identified by NGS using a 600-gene pane (Novarits Labs).
- FGFR2 fusions were concordant in 8/14 (57%) of subjects with tumor tissue and cfDNA. Notably, additional FGFR2 fusions were identified in two subjects that were not present in tumor tissue
- TP53 (50%), BAP1 (33%), and HLA-A (33%) were most frequently altered in cfDNA. Three subjects also had known deleterious alterations in PIK3CA (E454K & M1004I) and BRAF (BRA-ZP3 fusion).

Infigratinib is an oral, FGFR1-3-selective TKI that shows meaningful clinical activity against chemotherapy-refractory cholangiocarcinoma containing FGFR2 fusions. The large assortment of FGFR2 fusion gene partners identified in this study underscores the diversity of FGFR2 rearrangements that may drive cholangiocarcinoma. Other co-occurring genetic alterations with likely functional and variants of unknown significance were identified, which may alter pathways related to treatment

Although cfDNA analysis was performed in a limited number of subjects, preliminary data suggest that cfDNA analysis may be valuable for the identification of

References

- 1. Graham RP, et al. Hum Pathol 2014;45:1630-8.
- 2. Ross JS, et al. Oncologist 2014;19:235-42.
- 3. Farshidfar F, et al. Cell Rep 2017;18:2780-94.
- 4. Guagnano V, et al. Cancer Discov 2012;2:1118-33.
- 5. Nogova L, et al. J Clin Oncol 2017;35:157-65.
- 6. Javle MM, et al. J Clin Oncol 2018;36:276-282